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ABSTRACT

The evaluation of response bias and malingering in the cases of mild head injury should not rely on a single
test. Initial injury severity, typical neuropsychological test performance patterns, preexisting emotional stress
or chronic social dif®culties, history of previous neurological or psychiatric disorder, other system injuries
sustained in the accident, preinjury alcohol abuse, and a propensity to attribute benign cognitive and somatic
symptoms to a brain injury must be considered along with performances on speci®c measures of response
bias. This article reviews empirically-supported tests and indices. Use of the likelihood ratio and other
statistical indicators of diagnostic ef®ciency are demonstrated. Bayesian model averaging as a statistical
technique to derive optimal prediction models is performed with a clinical data set.

Paralleling the increased interest in mild trau-

matic brain injury (TBI) and use of neuropsycho-

logical evidence in the courtroom, numerous

comprehensive reviews of the assessment of

response bias and malingering of neuropsycholo-

gical impairment have appeared in the literature

over the past decade (Etcoff & Kampfer, 1996;

Iverson & Binder, 2000; Millis & Putnam, 1996;

Nies & Sweet, 1994; Rogers, Harrell, & Liff,

1993). Taking the next step in integrating the

quickly-expanding literature, Slick, Sherman,

and Iverson (1999) recently presented diagnostic

criteria for `malingered neurocognitive dysfunc-

tion (MND)' that are relevant in the assessment of

mild TBI. These diagnostic criteria represent a

signi®cant contribution to the ®eld because they

present a systematic and coherent set of diagnos-

tic guidelines based on empirical ®ndings. Slick

et al. (1999) de®ne MND as `̀ the volitional

exaggeration of cognitive dysfunction for the pur-

pose of obtaining substantial material gain, or

avoiding or escaping formal duty of responsibil-

ity'' (p. 552).

Recognizing that there are various levels of

diagnostic certainty, Slick et al. (1999) proposed

separate criteria for `de®nite,' `probable,' and

`possible' malingered neurocognitive disorder.

Except in rare cases, persons who are feigning

cognitive impairment will not disclose this fact.

Consequently, we do not have the idealized

diagnostic `gold standard' typically used to derive

estimates of prevalence and other diagnostic

parameters. However, this lack of a diagnostic

gold standard is actually rather common in

medicine and epidemiology, and not limited to

neuropsychology. Joseph, Gyorkos, and Coupal

(1995) note, `̀ In fact, one may argue that this is

virtually always the situation, since few tests are

considered to be 100% accurate'' (p. 262). One

response to this diagnostic dilemma, used by

Slick et al. (1999), is not to rely on `malingering'

tests alone. They recommend using multiple
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sources of data when considering the diagnosis of

MND. Assignment to 1 out of the 3 MND

categories is based on 4 different sets of criteria:

(a) presence of a substantial external incentive;

(b) evidence from neuropsychological testing; (c)

evidence from self-report; and (d) behaviors

meeting necessary criteria from groups B or C

that are not fully accounted for by psychiatric,

neurological, or developmental factors. Another

response to this diagnostic challenge that does not

exclude the approach advocated by Slick et al.

(1999) is to use mathematical methods to quantify

aspects of uncertainty in prediction ± an approach

demonstrated in later sections of this paper.

Although MND criteria are the proposed guide-

lines, it is our opinion that they represent the current

state-of-the-art. Our aim is to supplement these

guidelines. We do not believe that a single neuro-

psychological test in isolation is capable of accu-

rately diagnosing any condition, be it brain

dysfunction or malingered neurocognitive disorder.

As Iverson and Binder (2000) have emphasized,

response bias on a test is not tantamount to malin-

gering: `̀ To diagnose malingering, the clinician

must infer that the negative response bias was

designed to achieve some identi®able incentive''

(pp. 831±832). Contextual variables such as initial

injury severity, time postinjury, premorbid and

comorbid factors, and environmental contingen-

cies are needed to interpret any neuropsychological

test score meaningfully.

We begin with a brief discussion of these con-

textual factors. We then selectively highlight

psychometric advances in the detection of mal-

ingering. Test scores provide evidence in support of

a hypothesis (in this case, a diagnosis) when com-

bined with prior information. We then demonstrate

the explicit, quantitative use of prevalence rates, or

prior probabilities, with tests as a way to evaluate

the strength of neuropsychological evidence for a

particular diagnosis. We concludewith a discussion

and application of a newly developed statistical

approach that shows considerable promise in

improving prediction and diagnostic accuracy.

CONTEXTUAL FACTORS

A starting point in the assessment of response bias

is to establish the patient's initial injury severity

and time postinjury. Injury characteristics assist

the clinician in placing a patient's test scores in

proper context. Larrabee (1990) has termed the

consistency between test performance and injury

severity as `severity indexing' or `referencing.'

There exists a dose-response relationship between

the length of coma and the degree of cognitive

impairment (Dikmen, Machamer, Winn, & Tem-

kin, 1995), i.e., one expects greater cognitive

impairment as the severity of brain injury increases.

For example, one would not anticipate a patient

with a Glasgow Coma Scale (GCS) score of 15

examined at 12 months postinjury to produce

neuropsychological test scores similar to the ®nd-

ings from a patient with an initial GCS score of 5

examined at 2 months postinjury. Differential diag-

nosis takes on central importance whenever there is

an inconsistency between initial injury severity and

level of neuropsychological test performance. Sev-

eral studies provide data on typical neuropsycho-

logical test performances of persons from different

backgrounds with varying levels of TBI severity

that can assist the neuropsychologist in determin-

ing whether an individual's neuropsychological

test pro®le is atypical (Dikmen et al.,1995; Kreut-

zer, Gordon, Rosenthal, & Marwitz, 1993; Levin

et al., 1987; Ponsford et al., 2000).

Although the issue of long-term neuropsycho-

logical impairment following mild TBI has

generated controversy, the preponderance of

empirical evidence at this time does not support

an association between chronic, severe neuropsy-

chological impairment and uncomplicated mild

TBI. Studies of mild TBI that have included

control groups have found that neuropsycholog-

ical de®cits attributed to brain injury generally

resolve within 1±3 months postinjury (Dikmen,

McLean, & Temkin, 1986; Gentilini et al., 1985;

Levin et al., 1987; Ponsford et al., 2000). Studies

with ®ndings to the contrary have been hampered

by a number of methodological ¯aws, including

inconsistency or inaccuracy in the classi®cation

of brain injury severity, enrollment of participants

on the basis of symptoms rather than history of

brain injury, failure to control pre-existing condi-

tions, or lack of appropriate control groups

(Dikmen & Levin, 1993).

The study by Ponsford et al. (2000) is notable

for its inclusion of a trauma control group and
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consecutive enrollment of subjects on the basis of

injury. At 1 week postinjury, the mild TBI

participants performed worse on complex atten-

tion tasks compared to trauma controls. Interest-

ingly, the TBI group's mean performance was

superior to the control group's mean on a memory

test, the Rey Auditory Verbal Learning Test. At 3

months, there were no statistically signi®cant

differences between the groups on neuropsycho-

logical measures. In a separate study that

investigated outcome at a longer interval, Dikmen

et al. (1995) found that performance of their mild

TBI group was indistinguishable from the perfor-

mance of the trauma control subject group on the

Halstead±Reitan Neuropsychological Test Bat-

tery and other procedures at 1 year postinjury.

In examining the relationship between mild

TBI and cognitive impairment more broadly,

Binder, Rohling, and Larrabee (1997) conducted

a meta-analysis of prospective studies of mild TBI

with a minimum of 3 months follow-up and an

attrition rate of less than 50%. In the 11 samples

that were located, Binder et al. (1997) included

314 mild TBI patients and 308 control subjects in

their analysis. The overall effect size of mild TBI

on neuropsychological test performance was

small (g � .07 and d � .12). In other words, the

mild TBI group's mean was shifted one-eighth of

a standard deviation below the control group

mean. Using the Wechsler Adult Intelligence

Scale ± Revised (WAIS ± R) metric, this re¯ects a

change of about 2 points.

Despite the favorable prognosis for a single,

uncomplicated mild TBI, there is a subset of

persons who report cognitive dif®culties and

somatic symptoms that extend beyond 90 days

after the accident (Ruff, Camenzuli, & Mueller,

1996; Wrightson & Gronwall, 1981). The ques-

tion of malingering is most often raised in this

group because their outcome is atypical, the

severity of their symptoms and claimed disability

may be disproportionate to the initial injury sever-

ity, and civil litigation is frequently the context in

which the neuropsychologist examines the patient.

The role of litigation cannot be ignored because the

association between ®nancial incentives and neu-

ropsychological test results appears signi®cant. In

a meta-analysis of 18 studies containing 2,353

subjects, Binder and Rohling (1996) found a mode-

rate overall effect size of 0.47. This does not imply

that all persons involved in civil litigation or

disability proceedings are malingering. Yet, the

presence of external incentives may be a risk factor

for biased responding in the neuropsychological

examination that certainly must be considered. The

magnitude of the effect size of mild TBI on

neuropsychological test performance is substan-

tially lower than that associated with ®nancial

incentives (0.07 vs. 0.47). The neuropsychologist

faces an obvious and formidable diagnostic

challenge in the chronic, symptomatic mild TBI

case, sometimes termed the persistent postconcus-

sive syndrome (PPCS; Alexander, 1995). Although

physiological processes may account for the acute

symptoms of mild TBI, there does not appear to be

a single cause for the protracted symptoms

characterizing PPCS (Alexander, 1995).

When attempting to discern and disentangle

the factors that cause and maintain the sympto-

motology in the PPCS case, it is important to

consider not only the initial injury severity but

also premorbid and comorbid factors and current

environmental contingencies. It is unlikely that

the diagnostic possibilities are limited to only

malingering versus brain dysfunction. Preexisting

emotional stress or chronic social dif®culties

(Fenton, McClelland, Montgomery, MacFlynn, &

Rutherford, 1993; Klonoff & Lamb, 1998; Pons-

ford et al., 2000), learning disability (Dicker, 1992),

history of previous neurological or psychiatric

disorder (Ponsford et al., 2000), other system

injuries sustained in the accident (Dikmen et al.,

1986), preinjury alcohol abuse (Dikmen & Levin,

1993), and a propensity to attribute benign

cognitive and somatic symptoms to a brain injury

(Mittenberg, DiGiulio, Perrin, & Bass, 1992) are

but a handful of factors among many potential

conditions, along with malingering and injury-

related brain dysfunction, that may be responsible

for PPCS.

TESTS, PROCEDURES, AND INDICES

Along with the need to consider the above con-

textual factors in the differential diagnosis, there

are a variety of tests and indices that may be used

to detect response bias, some of which have
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greater empirical support than others. A selective

review of the tests and procedures follows. We

chose tests having a minimum of one cross-

validated study in a second independent group

of participants following the initial derivation

study. Other tests are highlighted if they appeared

to have diagnostic promise on the basis of innova-

tion or sample size used in test development.

Finding a statistically signi®cant difference

(i.e., p< .05) between a TBI group and malinger-

ing group on a response bias measure does not

necessarily mean that the measure is diagnost-

ically useful. A statistically signi®cant difference

simply indicates that the difference in the group

means is unlikely to be zero. This is essentially an

uninteresting ®nding from a diagnostic stand-

point. Other statistical indicators are needed, such

as effect size, likelihood ratio, or signal detection

theory variables. However, there is considerable

variability in the diagnostic ef®ciency statistics

that are reported in studies. We will focus on

effect sizes and sensitivity / speci®city rates in our

review because they are relatively easy to cal-

culate from the available summary data reported

in most published studies. We also illustrate the

use of graphical techniques of violin plots and

receiver operating characteristic (ROC) curves in

our section on performance patterns to detect

response bias. A separate section is devoted to the

speci®c use of the likelihood ratio.

The effect size can be de®ned as `̀ the dif-

ference between two population means expressed

in units of the standard deviation'' (Chow, 1996,

p. 133). A large effect size implies that the two

populations' score distributions on a given test or

measure are far apart. Thus, the test may be

diagnostically powerful in differentiating individ-

uals from the two different populations. The

effect size is also useful for comparing tests

because it is expressed as a standardized metric.

To assist the reader to integrate ®ndings from

the following test review, Table 1 presents the

individual tests and indices grouped thematically

along with their associated effect sizes. We

calculated effect sizes from the data reported in

the published studies. The studies we reviewed

generally employed one of the two research

designs. In one design, persons with unequivocal

evidence of brain injury were compared with

persons with mild injuries whose performance on

neuropsychological measures was marked by poor

effort as determined by incongruously low test

scores or below chance performance on symptom

validity tests (`clinical comparison group'). A sec-

ond type of design compared persons with brain

injuries with persons instructed to `fake' or malin-

ger neuropsychological impairment (`analog com-

parison group').

Forced-Choice Tests
Forced-choice tests (FCTs), also known as symp-

tom validity tests (SVTs), are among the earliest

Table 1. Effect Sizes of Selected Response Bias
Measures and Indices: Traumatic Brain Injury Versus
Response Bias/Incomplete Effort.

Test or Index Effect size
(g)

Comparison
group

Forced-Choice Tests
Portland Digit

Recognition
0.98±1.21 Clinical

Hiscock Forced-
Choice Procedure

2.36 Analog

5.44 Clinical
Test of Memory

Malingering
1.87 Clinical

Victoria Symptom
Validity Test

1.06 Clinical

Word Memory Test 0.38±0.42 Clinical
Recognition

Memory Test
0.90±1.28 Clinical

2.80±4.62 Analog
Seashore Rhythm

Test
1.33 Clinical

0.67±1.09 Analog
Speech-sounds

Perception Test
1.59 Clinical

0.66±1.61 Analog
Floor effect

Digit Span 1.97 Clinical
0.92±1.02 Analog

Reliable Digit Span 1.75 Clinical
Vocabulary minus

Digit Span
1.48 Clinical

Performance patterns
Wechsler Adult
Intelligence Scale ±

Revised discriminant
function

2.10 Clinical

California Verbal
Learning Test Hits

1.26±2.59 Clinical
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developed (Pankratz, Fausti, & Peed, 1975) and

most extensively evaluated tests for the detection

of response bias and malingering. A stimulus item

such as a word, number, photograph, or line

drawing is presented and then followed by a

two-choice recognition task with the original

stimulus item paired with a distractor or foil.

The individual is asked to choose the target

item. An individual with no memory for the

stimuli will perform at chance level. Response

bias can thus be assessed by comparing an indi-

vidual's performance on the two-alternative FCT

with the binomial distribution to determine the

probability of obtaining a particular score. As

scores decline below 50% correct, it is increas-

ingly likely that the individual was deliberately

choosing wrong answers. As Pankratz has sug-

gested, `̀ `motivated wrong answering' is the

smoking gun of intent'' (Pankratz & Erickson,

1990). Performance on one or more FCTs that is

below chance at a statistically signi®cant level

(p< .05) is termed `de®nite negative response

bias' by the proposed MND diagnostic guidelines

(Slick et al., 1999) and is considered to be

`̀ closest to an evidentiary `gold standard' for

malingering'' (p. 551), excluding confession by

the examinee. If the below chance performance

cannot be accounted for by psychiatric, neurolo-

gical, or developmental factors and there is an

external incentive, the examinee meets the criteria

for `De®nite Malingered Neurocognitive Disor-

der' (Slick et al., 1999). According to these

proposed criteria, other psychometric tests or

indices may be used in the diagnosis of Probable

or Possible MND, but only below chance perfor-

mance on a FCT meets the criteria of de®nite

response bias needed for the diagnosis of De®nite

MND.

Of the digit recognition FCTs, the Hiscock

Forced-Choice Procedure (HFCP; Hiscock &

Hiscock, 1989) and Portland Digit Recognition

Test (PDRT; Binder & Willis, 1991) have

received the greatest empirical support to date.

Individuals with psychiatric disorders or brain

dysfunction obtained mean scores that ranged

from 84 to 99% correct on the PDRT or HFCP

(Binder, 1993; Guilmette, Hart, & Giuliano,

1993; Guilmette, Hart, Giuliano, & Leininger,

1994; Prigatano & Amin, 1993). In contrast,

clinical subjects suspected of malingering scored

56±74% correct on the PDRT or HFCP (Binder,

1993; Greiffenstein, Baker, & Gola, 1994;

Prigatano & Amin, 1993). Analog malingering

participants obtained mean scores that ranged

from 53 to 60% correct on these measures (Binder

& Willis, 1991; Guilmette et al., 1993).

Although a performance on a FCT that is

below chance is persuasive evidence of response

bias, the majority of malingerers will not perform

below chance. In surveying analog studies in

which subjects were instructed to malinger

cognitive de®cits, Hiscock, Branham, and His-

cock (1994) found that no greater than 34% of the

cases demonstrated below chance performance. A

strategy to address this shortcoming has been to

select cut-off scores for FCTs that are above

chance that have acceptable diagnostic ef®ciency.

Often, the cut-off score is one that few if any,

persons with brain dysfunction perform below.

For example, scores less than 54±63% correct on

the PDRT may indicate poor effort (Binder, 1993;

Greiffenstein et al., 1994) while a cut-off of 90%

or less has been used with the HFCP (Guilmette,

Hart, Giuliano, & Leininger, 1994). Depending

on the sample and cut-off score, the PDRT and

HFCP have been reported to accurately classify

89±100% of persons with TBI and 75±90% of

suspected clinical malingerers or analog simula-

tors.

Other FCTs that show promise include the

Computerized Assessment of Response Bias

(CARB; Conder, Allen, & Cox, 1992), the Test

of Memory Malingering (TOMM; Tombaugh,

1997), the Victoria Symptom Validity Test

(VSVT; Slick, Hopp, Strauss, & Thompson,

1997), and the Word Memory Test (WMT; Green,

Allen, & Astner, 1996). The CARB is a

computerized digit recognition task that has been

used to examine litigants with a wide range of

brain injury severity. Green and Iverson (in press)

found that litigants with mild TBI performed

worse and had longer latencies on the CARB than

litigants with moderate and severe TBI.

The TOMM is a visual recognition task that

uses 50 drawings of common objects in 3 trials.

Mean performances across groups of persons with

a variety of neurological disorders ranged from

91.4 to 98.6% correct on Trial 2 (Tombaugh,
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1997). To date, most validation studies of the

TOMM have employed an analog design in which

college students have been instructed to malinger

(Rees, Tombaugh, Gansler, & Moczynski, 1998).

However, in a small clinical study, a litigating

mild TBI group obtained statistically signi®cant

lower scores on Trial 2 than the non-litigating TBI

group. The effect size was very large (g � 1.87)

(Rees et al., 1998).

The VSVT is a 48-item computerized version

of the digit recognition FCT paradigm that uses

both correct number and response latency to

assess response bias. Although the initial norma-

tive sample was small, additional empirical

support for the VSVT with larger samples has

appeared (Doss, Chelune, & Naugle, 1999). Doss

et al. (1999) found that their TBI compensation-

seeking group had disproportionately more indi-

viduals scoring in the questionable / invalid range

on the VSVT than a group of non-compensation-

seeking patients. The effect size was large,

g � 1.06.

In the WMT, the individual is presented with

20-word pairs, which are followed by immediate

and delayed recognition trials (Green et al., 1996).

The subject's task is to select the original words

from target±foil pairs. Thus far, WMT has been

applied primarily to litigated cases of mild to

severe TBI (Green, Iverson, & Allen, 1999;

Iverson, Green, & Gervais, 1999). In this series

of litigated cases, the mild injury group showed a

greater degree of biased responding as measured

by the WMT with medium effect sizes (g � .38±

.43). This may have been an especially rigorous

test of the WMT because of the possibly low

prevalence of malingering in the sample. Many

studies have typically included equal numbers of

participants in their groups or have had inclusion

criteria increasing the likelihood of more extreme

forms of malingering, and, thus, maximized the

performance of the detection measure.

Standard neuropsychological measures with a

forced-choice format have also been used to

detect response bias. The Recognition Memory

Test (RMT; Warrington, 1984) differentiated

persons with moderate to severe TBI from

litigating mild head injury claimants (Millis,

1992; Millis & Putnam, 1994) with overall correct

classi®cation ranging from 76 to 83% with

associated large effect sizes (g � 0.90±1.28).

Similar patterns with even larger effect sizes

(g � 2.80±4.62) were found in an analog mal-

ingering study with the RMT by Iverson and

Franzen (1994). Other standard measures having

a forced-choice format that appear useful in

detecting response bias include the Seashore

Rhythm Test (SRT) and Speech-sounds Percep-

tion Test (SSPT) (Gfeller & Cradock, 1998;

Goebel, 1983; Heaton, Smith, Lehman, & Vogt,

1978; Mittenberg, Rotholc, Russell, & Heilbron-

ner, 1996; Millis, Putnam, & Adams, 1996;

Trueblood & Schmidt, 1993). Based on these

studies, errors in excess of 17 on the SSPT or 8 on

the SRT in the litigated mild TBI case should raise

the question of response bias.

Floor Effect
Some neuropsychological tasks are reasonably

easy for persons with severe TBI. For example,

forward digit span is often relatively intact in a

variety of neurological disorders. In contrast, a

strikingly poor forward span may signal response

bias (Binder & Willis, 1991; Greiffenstein, Baker

& Gola, 1994; Greiffenstein, Gola, & Baker,

1995; Iverson & Franzen, 1994; Meyers & Vol-

brecht, 1998; Mittenberg, Azrin, Millsaps, &

Heilbronner, 1993; Mittenberg, Theroux-Fichera,

Zielinski, & Heilbronner, 1995; Trueblood, 1994;

Trueblood and Schmidt, 1993). The Digit Span

(DS) subtest from the WAIS ± R or Wechsler

Memory Scale ± Revised has been used most fre-

quently in these studies. Large effect sizes were

associated with response bias in analog designs,

(g � 0.92±1.02) (Heaton et al., 1978; Mittenberg

et al., 1995) and clinical designs, (g � 1.97)

(Millis, Ross, & Ricker, 1998). In these studies,

the response bias groups' mean performances on

the DS were substantially lower than the mean

performances generated by persons with brain

injury.

A second method developed by Greiffenstein

et al. (1994) uses the longest number of digits

repeated accurately on both trials of the DS

(forward plus backward) and is termed Reliable

Digit Span (RDS). In comparing a group of

persons with TBI with a group of probable

clinical malingerers on the RDS, Greiffenstein

et al. (1994) found a large effect size, (g � 1.75).
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Using a score of seven or less to indicate response

bias, Meyers and Volbrecht (1998), in a cross-

validation study, found that 96% of their non-

litigating TBI participants were correctly classi-

®ed. Of their litigating mild TBI participants, who

failed a separate FCT, 78% were correctly class-

i®ed by the RDS.

A third approach has been to examine DS in

relationship to the WAIS ± R Vocabulary subtest.

Mittenberg et al. (1995) reported that analog

malingerers showed reductions on DS relative to

Vocabulary, while persons with TBI showed

similar levels of performance on both subtests.

A Vocabulary-Digit Span discrepancy of two or

more age-corrected scaled score points correctly

classi®ed 71% of their sample. In a study of

probable clinical malingerers and persons with

moderate to severe TBI, Millis et al. (1998) found

that the same cut-off score yielded a correct

classi®cation rate of 79%.

Performance Patterns
Response bias may be a complex set of behaviors

that is inadequately assessed by a single test.

Attempts have been made to improve diagnosis

by developing multivariable composites. An early

investigation by Heaton et al. (1978) used dis-

criminant analysis with the Halstead ± Reitan

Neuropsychological Test Battery (HRB) that con-

trasted the performance pattern of head-injured

patients with control subjects instructed to feign

neuropsychological impairment. The study, how-

ever, was hampered by statistically over-®tting

the model with an inadequate subject-to-variable

ratio.

In a later study of 80 participants with TBI and

80 normal volunteers instructed to simulate

cognitive impairment, Mittenberg et al. (1996)

used stepwise discriminant function analysis and

derived a function containing 10 HRB variables

that correctly classi®ed 89% of the cases. When

applied to a sample of VA patients with a history

of TBI, the discriminant function correctly

classi®ed 78% of the sample (McKinzey &

Russell, 1997).

In an earlier study, Mittenberg et al. (1995)

reported that a 7-subtest WAIS ± R discriminant

function accurately classi®ed 79% of head-

injured patients and normal subjects instructed

to malinger. Millis et al. (1998) cross-validated

the function on a sample of 100 participants; 92%

of persons with moderate to severe TBI were

correctly classi®ed, as were 88% of mild TBI

litigants who had performed within chance on the

RMT. Axelrod and Rawlings (1999) later applied

the same function to patients with TBI who had

received the WAIS ± R 2± 4 times over the course

of 1 year postinjury. Rates of correct classi®cation

ranged from 76 to 93% and were independent of

the level of cognitive performance. No practice

effect was found.

The diagnostic ef®ciency of this WAIS ± R

discriminant function can be evaluated from

other perspectives as well. A large effect size

(g � 2.10) was associated with the mean differ-

ence on this function between the TBI group and

incomplete effort group in a study by Millis et al.

(1998), which estimated that the group means

were separated by about 2 SD (Table 1). This

separation in the scores distributions on the

discriminant function can be graphically por-

trayed by violin plots in Figure 1 (Hintze &

Nelson, 1998). Violin plots combine the summary

statistics of a box plot with the graphical

information given by a local density estimator to

show the distributional structure of the discrimi-

nant function scores in the different samples.

Although there is some overlap in the groups'

overall score distributions, there is complete

separation in the interquartile ranges. The ROC

curve in Figure 2 provides additional diagnostic

information. If a diagnostic test has no utility, its

Area under Curve (AUC) would be .50 and its

plot would not depart from the 45� line. As a

test's diagnostic utility increases, its AUC ap-

proaches 1.0. In the Millis et al. sample, the

WAIS ± R discriminant function has excellent

diagnostic utility with an AUC that exceeds .90

(AUC � .94). The AUC also indicates that a

randomly selected individual from the litigation

group had a larger WAIS ± R discriminant func-

tion value than a randomly chosen person from

the TBI group, 94% of the time in the Millis et al.

sample.

The California Verbal Learning Test (CVLT;

Delis, Kramer, Kaplan, & Ober, 1987) has been

used by numerous investigators to detect response

bias. Millis, Putnam, Adams, and Ricker (1995a)

ASSESSMENT OF RESPONSE BIAS IN MILD HEAD INJURY 815



found that a 3-variable CVLT discriminant

function (Recognition Discriminability, Long

Delay Cued Recall (LDCR), List A Trials 1±5

Recall) yielded an overall correct classi®cation

rate of 91% when applied to a group of patients

with moderate to severe brain injuries and a group

of probable clinical malingerers. Jackknife cross-

validation also produced an overall hit rate of

91% with 91% (95% CI � 73.2±97.6) for sensi-

tivity to response bias and 91% (95% CI � 73.2±

97.6) for speci®city to TBI. Millis et al. (1995a)

also examined an individual CVLT variable,

Recognition Hits, to attempt replication of an

earlier study by Trueblood and Schmidt (1993).

Sensitivity was 83% (95% CI � 63.9±93) and

speci®city was 96% (95% CI � 79±99.2). Sub-

sequent studies (Baker, Donders, & Thompson,

2000; Coleman, Rapport, Millis, Ricker, &

Farchione, 1998; Sweet et al., 2000) applied the

original cut-off scores derived by Millis et al.

(1995a) to other groups of persons with TBI and

to groups of analog and probable clinical

malingerers. Estimates of the diagnostic accuracy

Fig. 1. Violin Graphs of Mittenberg WAIS ± R Dis-
criminant Function (Millis et al. 1998). The median is
the short horizontal line, the interquartile range is the
narrow shaded box, the y-axis is labeled at the
minimum, median, and maximum scores for each
group, and the data are surrounded by mirrored density
traces.

Fig. 2. Receiver Operating Characteristic (ROC) Curve: Mittenberg WAIS ± R Discriminant Function (Millis et al.,
1998).
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of these cut-off scores have not been as high as

those reported by Millis et al. (1995a), but they

have tended to be within the original 95%

con®dence intervals. In general, sensitivity to

response bias has been lower than the original

estimates (63±80% for hits and 74% for the

discriminant function), but speci®city for TBI has

remained high (e.g., 87±94% for hits and 83±93%

for the function). Biased responding appears to be

associated with disproportionate impairment on

recognition tasks in an absolute sense and in

relationship to free recall performance on list-

learning tasks. A similar pattern has been found

when using the Rey Auditory Verbal Learning Test

(Bernard, 1991; Binder, Villaneuva, Howieson, &

Moore, 1993; Suhr, Tranel, Wefel, & Barash,

1997).

Performance Curve Analysis
Frederick, Crosby, and Wynkoop (2000) have

discussed the limitations of a dichotomous clas-

si®cation scheme in which the only categories are

malingering versus non-malingering. They have

proposed an alternative four-four scheme based

on two dimensions: motivation and effort. Persons

can vary from high to low on these dimensions

and are characterized as compliant, careless, irre-

levant, or malingered in their response style.

Frederick (1997) developed the Validity Indicator

Pro®le (VIP) based on this conceptualization. The

VIP has verbal and non-verbal subtests, uses a

dichotomous forced-choice format, and contains

items with varying dif®culty. Performance curves

are generated from the patterns of items that are

correctly answered, which then serve as the basis

for classi®cation. To date, the validation studies of

the VIP have focused primarily on samples of

criminal defendants referred for pretrial mental

health evaluations (Frederick et al., 2000), and

thus, the generalizability of the ®ndings to mild

TBI litigants remains to be established. None-

theless, the VIP's performance curve approach

may represent an important methodological

advance that could be applied to other procedures.

For example, Gudjonsson and Shakleton (1986)

used a less complex form of performance curve

analysis to examine the linear trend and item

dif®culty with Raven's Standard Progressive

Matrices to detect response bias in an analog

study. A second analog study by McKinzey,

Podd, Krehbiel, and Raven (1999) found that

the same linear trend formula correctly classi®ed

95% of normal subjects taking the test under

standard conditions and 74% of normal subjects

instructed to fake.

Other Indices
High error rates on tactile ®nger recognition or

localization tasks could signal response bias in the

context of a litigated mild TBI case without

peripheral injuries, particularly when errors are

in excess of seven (Binder & Willis, 1991; Heaton

et al., 1978; Mittenberg et al., 1996; Trueblood &

Schmidt, 1993; Youngjohn, Burrows, & Erdal,

1995). Cognitive or physiological processes that

may be dif®cult for persons to alter so as to appear

genuinely impaired may have promise in detect-

ing response bias, such as event-related potentials

(Ellwanger, Tenhula, Rosenfeld, & Sweet, 1999;

Rosenfeld, Sweet, Chuang, Ellwanger, & Song,

1996) and priming memory tasks (Davis et al.,

1997; Hanley, Baker, & Ledson, 1999; McGuire

& Shores, 1998).

Although a detailed discussion of the Minne-

sota Multiphasic Personality Inventory-2 (MMPI-

2) is outside the scope of this paper, it is worth

noting that the Fake Bad Scale (FBS), a rationally

derived scale composed of 43 MMPI±2 items,

may warrant particular attention in character-

izing the manner in which neuropsychological

malingerers respond. FBS elevations have been

associated with litigating mild head-injured

claimants who scored below chance on FCT

(Larrabee, 1998; Millis, Putnam, & Adams,

1995b), with chronically symptomatic mild head

injury patients whose WAIS ± R FSIQ scores

declined on retesting (Putnam, Kurtz, Millis,

Adams, & O'Leary, 1995), and response time

and the number of items correct on the VSVT

(Slick, Hopp, Strauss, & Spellacy, 1996). Scores

in excess of 22 on the FBS may suggest response

bias in litigated mild TBI cases.

THE PROBLEM WITH TESTS

The core problem is that a test in isolation cannot

`prove' the diagnosis of malingering, brain dys-
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function, or any disorder. Tests can only provide

evidence in support of various diagnoses. Even

then, the test result must be combined with prior

information or knowledge before it can be inter-

preted meaningfully. Although high diagnostic

sensitivity and speci®city are desirable properties

for a test to possess, these parameters alone

cannot answer the fundamental diagnostic ques-

tion, namely, given a positive test score, what is

the probability that the patient has the disorder?

The only way to answer this question is to

combine the test result with the pretest odds or

prior probability, sometimes also referred to as a

base rate or prevalence of the disorder. For the

purposes of this calculation, a diagnostic test can

be characterized in terms of a single number,

known as the likelihood ratio (LR): sensitivity /

(1 ± speci®city) (Sackett, Straus, Richardson,

Rosenberg, & Haynes, 2000). The LR indicates

how much more likely a positive test is to be

found in a person with, as opposed to without, the

disorder (Greenhalgh, 1997). The LR is then

multiplied by the pretest odds to obtain the

posttest odds (i.e., the probability that the person

has the disorder given a positive test result).

For example, the prevalence of persisting

neuropsychological impairment associated with

mild TBI has been estimated to be 0.05, based on

meta-analysis (Binder et al., 1997), yielding pretest

odds of 0.05 / (1±0.05) � 0.053. The Average

Impairment Rating (AIR) from the HRB has a

sensitivity of 0.80 and a speci®city of 0.88 (Heaton,

Grant, & Matthews, 1991) when using a T-score

cut-off of less than 40 to de®ne impairment,

yielding a LR of 6.7 (95% CI � 5.2±8.6). Thus, if

a patient with a history of a mild TBI, in the chronic

stage of recovery, obtained an impaired AIR, the

posttest odds would be (0.053)� (6.7) � 0.36 (or

9:25) in favor of the diagnosis of brain injury.

Converting odds to a probability, 0.36 / (1 � 0.36),

there would be a 26% probability in support of a

diagnosis of brain injury. On the basis of this one

speci®c ®nding, there is insuf®cient evidence to

support the diagnosis of TBI in this case.

In a second example, the prevalence of biased

responding following mild TBI can be estimated

to be 0.26, based on a weighted mean effect size

from a meta-analysis of three studies by Binder

and Rohling (1996) and the application of the U1

statistic (Cohen, 1988), yielding pretest odds of

0.26 / (1ÿ0.26) � 0.35. Selecting the midpoints

for sensitivity (82.5) and speci®city (94.5) esti-

mates from studies using the Hiscock and related

digit recognition FCTs, a LR of 15 is obtained.

Thus, if a hypothetical mild TBI litigant failed this

FCT, the posttest odds would be (0.35)� (15)

� 5.25, or 84% in favor of the diagnosis of biased

responding. In this case, the evidence of biased

responding appears to be compelling. Additional

information would be helpful in determining

whether a diagnosis of MND is warranted.

Similarly, likelihood ratios can be estimated

for other response bias indices if one has reason-

ably good estimates of a measure's sensitivity and

speci®city (e.g., CVLT Hits � 9 and WAIS ± R

discriminant function � 11). An obvious issue in

the use of the LR is the availability of reasonably

accurate estimates of the prior probability or

prevalence of the disorder. However, the accuracy

of all diagnostic decisions depend on the

estimates or assumptions that one makes about

prevalence rates, even if one does not use the LR.

The LR simply forces the diagnostician to be

explicit about the assumptions. Increasingly, large

sample studies of TBI (Dikmen et al., 1995) and

meta-analyses (Binder et al., 1997) can assist in

developing prevalence estimates. In addition, infer-

ences about population prevalence can be esti-

mated in the absence of a diagnostic gold standard

with recently developed Bayesian methods using

the Gibbs sampler, which is an iterative Markov-

chain Monte Carlo technique (Joseph et al., 1995).

A separate issue involves the use of multiple

diagnostic tests. If the tests were independent, one

could simply multiply the running product by the

likelihood ratio generated by each subsequent

test. However, it is unlikely that most neuropsy-

chological and response bias tests are unrelated.

In fact, there may be a great deal of redundancy

or multicollinearity among tests. A different

approach is needed to combine several indices,

to which we now turn.

BAYESIAN MODEL AVERAGING

From the foregoing review, it is apparent that

neuropsychologists have at their disposal dozens
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of malingering tests and indices from which to

choose. However, the optimal choice of tests may

be far from obvious. Clinicians may opt to choose

a subset from the battery of tests available to

them. However, even with a moderate number of

tests available, the space of available subsets is

daunting; for example, if one considers 15 differ-

ent tests, there are 32,768 potential subsets of tests

to evaluate (i.e., 215). Of course, the clinician will

want to combine the tests in a way that takes into

consideration each test's diagnostically meaning-

ful contribution. In addition, the redundancy of

the tests must be considered. The ®nding that an

examinee scores `negative' on a dozen malinger-

ing tests may not be particularly enlightening if

there is a high degree of collinearity among them.

Until recently, investigators have had limited

methods to evaluate and select sets of tests.

Choosing sets on the basis of theory offers little

guidance because theoretical considerations often

generate a large number of models and candidate

variables. Stepwise regression methods (Efroym-

son, 1960) provide a standard methodology for

®nding optimal sets of tests and their weights for

use in prediction. However, these methods have

well documented ¯aws: they overemphasize the

con®dence in the model, they tend to include

noise variables in the ®nal model, and they are

sensitive to small changes in the data (Freedman,

1983; Hocking, 1976). In addition, each potential

test is dichotomized as `signi®cant' or `not

signi®cant,' which oversimpli®es the amount of

diagnostically valuable information in each test.

By selecting a single collection of tests (i.e., a

single model), stepwise regression and similar

model selection techniques do not account for the

substantial uncertainty in the model selection

process. Recent research argues that averaging

over many models can provide signi®cantly better

predictions by taking into account the model

uncertainty. Bayesian model averaging (BMA,

Hoeting, Madigan, Raftery, & Volinsky, 1999)

provides an approach to hypothesis testing, model

selection, and accounting for model uncertainty

that overcomes the dif®culties associated with

conventional frequentist p-value signi®cance tests

and model selection procedures. BMA approaches

the problem of model selection by ®nding a

collection of the best models, and averaging over

them in accordance with their posterior model

probabilities. The different models and variables

(in this case, the different tests for response bias)

are incorporated into the predictions with weights

proportional to the evidence we have for their

utility. Madigan and Raftery (1994) have shown

that averaging over many models in this manner

provides superior out-of-sample predictive perfor-

mance compared to the typical approach of

evaluating a single model. BMA has been used

successfully in several problem domains, including

analysis of a Mayo Clinic study using a Cox

proportional hazard model to investigate risk

factors for stroke in the elderly (Volinsky, Madigan,

Raftery, & Kronmal, 1997). The Appendix presents

a brief discussion of the mathematical foundations

of BMA. In the following section, we demonstrate

an application of BMA in the development of

response bias indices with the CVLT.

We used BMA to select and evaluate models

composed of variables from the CVLT that sought

to differentiate persons with documented moder-

ate to severe TBI from persons with mild injuries

in litigation who were not giving their best effort

on neuropsychological testing (i.e., were respond-

ing in a biased manner). As previously discussed,

several investigators have used single and multi-

ple variables from the CVLT to detect response

bias. Although there has been a reasonable degree

of convergence in the ®ndings from diverse

studies, an unresolved question is whether

investigators have yet identi®ed optimal sets of

the 17 possible CVLT variables to predict

response bias. If we consider a speci®c subset of

these 17 variables to be a model, these data

generate 217 � 131,072 models to consider! The

BMA techniques allowed us to identify the best

models and average over them.

Participants
All participants were outpatients at a Midwest

United States university-af®liated rehabilitation

hospital. The litigation group (LG) was composed

of 80 participants (age: M � 39.1, SD � 11.3;

education: M � 11.6, SD � 2.0) with alleged

TBI who were in litigation and claimed to be

vocationally disabled. They had brief or no loss of

consciousness (i.e., less than 5 min), normal CT

or MRI brain scans, and no focal neurological
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de®cits. Although none admitted to malingering,

all subjects obtained scores within or below

chance on one or both subtests of a dichotomous,

forced-choice measure, the RMT (Warrington,

1984). These characteristics suggested that these

persons were not giving their best effort to com-

plete the neuropsychological tests, and thus repre-

sented a reasonable clinical approximation of

malingering or response bias. Mean time postin-

jury was 21.0 months (SD � 22.2).

The TBI group was composed of 80 partic-

ipants (age: M � 37.1, SD � 9.2; education:

M � 11.9, SD � 2.2) who had sustained a mod-

erate to severe TBI, as assessed by the GCS with

scores ranging from 3 to 12. Mean time postinjury

was 27.1 months (SD � 40.2).

Procedure
A logistic regression model was selected for ®tting

and evaluating because the objective of this inves-

tigation was the prediction of a binary outcome

(i.e., TBI vs. Response Bias), on the basis of 17

CVLT variables (CVLT Total Recall, Trial 5

Recall, List B Recall, Short Delay Free Recall

(SDFR), Short Delay Cued Recall (SDCR), Long

Delay Free Recall (LDFR), Long Delay Cued

Recall (LDCR), Semantic Clustering (SC), Pri-

macy, Recency, Slope, Consistency, Persevera-

tions, Intrusions, Hits, False Positives, and Bias).

We chose two programs written in S-Plus (Math-

Soft, 1999) to perform BMA: BIC.GLM (Volinsky

et al, 1997) was used to pare down the model space

to a manageable set of candidate models, whereas

GLIB (Raftery, 1996) calculated the marginal like-

lihoods, posterior model probabilities, and the

averaged coef®cients for each variable.

RESULTS

Using BIC.GLM to traverse the model space in

search of the best models, we identi®ed 13 models

with support from the data over a prede®ned

threshold. Table 2 presents these models in the

order of decreasing estimated posterior probabil-

ity. Only 7 out of the 17 possible CVLT variables

appeared, indicating that the remaining 10 con-

tained negligible added value over and above

these variables. Also, SDFR and SDCR never

appeared together in a model, which suggested

marked collinearity. The most important variable

was Hits, which appeared in all 13 models. The

fact that no other variable appeared in all models

indicated a high degree of model uncertainty.

GLIB was then used to re®ne the inferences by

exact calculation of the 13 models' posterior

probabilities. To perform the calculation, we

provided a reference set of priors indexed by a

Table 2. Selection of Independent Variables.�

Model SDFR SDCR LDFR Primacy Hits False Positives Bias

1 X X X X X

2 X X X X

3 X X X X

4 X X X X

5 X X X

6 X X X

7 X X X

8 X X

9 X X X X

10 X X

11 X X

12 X X X

13 X

Note. �SDFR � Short Delay Free Recall, SDCR � Short Delay Cued Recall, LDFR � Long Delay Free Recall.
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parameter � (Raftery 1996). We then compared

nested models and excluded models with more

parameters if a simpler model had a higher

posterior probability. Models 2±4, and 9 were

retained for further consideration. Table 3 shows

the normalized posterior probabilities of these

four models under three different values of �.

Selection of �may bias the results towards simple

or complex models, but as Table 3 shows, � did

not make much of a difference in the posterior

model probabilities. Under a wide range of values

of �, Model 2 had the most support from the data

while the support for the other models showed

moderate model uncertainty. To balance the

complexity considerations, we focused on

� � 1.65 in the subsequent analyses.

Using Table 4, we can derive the posterior

effect probabilities for the individual CVLT

variables. If we assume that a priori each variable

has a 50% probability of having a non-zero

parameter, Table 4 contains the posterior prob-

abilities that the parameter is different from zero.

For instance, the posterior distribution of the

parameter for SDFR would have a point mass of

0.32 at the value zero, with the other 68% of the

distribution centered around its averaged para-

meter estimate. Again, the probabilities were not

signi®cantly in¯uenced by the selection of �.

In summary, there was very strong evidence

for the model that included Hits and LDFR in a

CVLT model to predict malingering. In addition,

moderately strong evidence was found for SDFR

and Response Bias. The data appeared incon-

clusive regarding the roles of Primacy and SDCR

and support was essentially nil for False

Positives. For the remaining 10 CVLT variables,

we found little evidence to include them in our

models.

Table 5 presents the group means and standard

deviations for the four variables that had the

highest posterior support for predicting malinger-

ing. These four variables are contained in Model

2, which had the highest posterior probability of

any single model. Overall, the litigation group's

levels of performance on the free recall and

Table 3. Posterior Model Probabilities for the Selected Models.�

Posterior probabilities (%)

Model Variables � � 1.00 � � 1.65 � � 5.00

2 SDFR, LDFR, Hits, Bias 42 43 44
3 SDFR, LDFR, Primacy, Hits 25 24 24
4 SDCR, LDFR, Hits, Bias 25 26 26
9 SDCR, LDFR, Hits, False Positives 7 7 6

Note. �SDFR � Short Delay Free Recall, LDFR � Long Delay Free Recall.

Table 4. Posterior Probabilities for Inclusion of Each
Variable.�

Posterior probabilities (%)

Variable � � 1.00 � � 1.65 � � 5.00

SDFR 68 68 68
SDCR 32 32 32
LDFR 100 100 100
Primacy 25 24 24
Recognition Hits 100 100 100
False Positives 7 7 6
Response Bias 67 69 70

Note. � SDFR � Short Delay Free Recall, SDCR �
Short Delay Cued Recall, LDFR � Long Delay Free
Recall.

Table 5. Group Means and Standard Deviations for
CVLT Variables Having Highest Posterior Prob-
abilities.�

TBI Litigating

CVLT variables M (SD) M (SD)

SDFR 7.3 (3.2) 5.1 (2.9)
LDFR 8.0 (3.5) 4.5 (2.9)
Hits 14.0 (1.8) 9.2 (3.7)
Bias 0.01 (0.4) ÿ0.2 (0.4)

Note. +SDFR � Short Delay Free Recall, LDFR �
Long Delay Free Recall.
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recognition measures (SDFR, LDFR, and Hits)

were poorer than those of the TBI group. In

addition, the litigation group showed dispropor-

tionate `impairment' on the recognition task

compared to their performance on free recall

tasks. In contrast, the TBI group demonstrated

comparable levels of performance across recall

and recognition tasks relative to the CVLT norms,

and a neutral response tendency on the recogni-

tion trial.

Predictive Performance
Ultimately the goal of any of these models is to

predict whether a given individual is exhibiting

response bias. Any single model can be used to

calculate a probability that a given individual is in

the TBI group. Similarly, the BMA analysis

provides a model-averaged probability. One way

to check the effectiveness of this new methodol-

ogy is to see how well it is able to discriminate the

TBI group from the litigating group in a hold-out

sample. We compared the BMA analysis to a

standard method that is commonly used, stepwise

logistic regression. To accomplish this, we used

75% of the observations as a training sample to

build all the models, and 25% as a test sample to

assess the predictive performance. Our predictive

measure was the rate of overall correct classi®ca-

tion averaged over 100 iterations of this proce-

dure. BMA correctly classi®ed 78.2% of the test

sample compared to 77.7% for the stepwise

procedure.

DISCUSSION

The models selected with BMA in this investiga-

tion were consistent with ®ndings from previous

investigations. That is, one pattern of malingering

is characterized by disproportionately poor per-

formance on recognition measures in an absolute

sense and relative to performances on free recall

measures. In contrast, persons with TBI generally

®nd recognition tasks easier than free recall or

perform different memory tasks at comparable

levels. Previous investigations (Millis et al., 1995a;

Sweet et al., 2000; Trueblood & Schmidt, 1993)

found Recognition Hits on the CVLT to be one of

the most useful variables in detecting malinger-

ing. BMA corroborates this, as Hits was the only

variable to show up in all models. However, by

selecting a model that only includes Hits, the

analyst is neglecting the handful of other vari-

ables that appeared to contribute incrementally

signi®cant information in the detection of mal-

ingering.

BMA also quanti®ed the contribution of the

other variables and compared them with the

contribution of Hits via posterior effect probabil-

ities. With the exception of Hits and LDFR and

possibly Response Bias and SDFR, we unfortu-

nately found little evidence to consider the

remaining 13 CVLT variables. This was disap-

pointing as we had hoped to detect and describe a

qualitatively more complex response bias con-

struct than is implied by a `recognition versus free

recall' pattern. On the other hand, response bias

may be only partially captured by the CVLT.

Alternatively, the construct of response bias may

not be as psychometrically complex as previously

thought.

To our knowledge, this is the ®rst application

of BMA in clinical neuropsychology and one that

demonstrates the bene®ts of BMA. After narrow-

ing down the model space to four models to

average, the best model still only had 42% of the

posterior probability. This indicated that there was

too much model uncertainty to claim that any one

single model could suf®ciently ®t these data.

Conventional frequentist approaches tend to

overstate the evidence for the effects of variables

and have no method for quantifying model

uncertainty. Moreover, standard approaches tend

to reinforce the illusory notion that there is only

one `true' model that accurately describes phe-

nomena. Accounting for this model uncertainty

results in a better understanding of the variables, a

better quanti®cation of the models' effectiveness,

and improved predictive performance. Admit-

tedly, the difference in the predictive performance

between BMA and stepwise selection was

negligible in the current analysis. However, this

®nding was likely to be related to the study's

small sample and the idiosyncrasies of this

particular set of variables. That is, Recognition

Hits and LDFR were powerful predictors, but the

remaining variables were relatively weak. Almost

any selection method would have minimal dif-
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®culty in choosing Hits and LDFR. We suspect

that BMA's superiority would be more apparent

with a larger sample and with a set of variables

having a wider range of predictive capacity.

GENERAL SUMMARY

As humans, we often have a low tolerance for

ambiguity, which impels us to impose meaning on

experience. This tendency carries over into the

diagnostic realm. If we rely on our clinical judg-

ment alone, our diagnostic accuracy can be abys-

mal. Humans tend to ignore prevalence rates,

assign non-optimal weights to predictor variables,

disregard regression toward the mean, improperly

assess covariation, and over-weigh vivid data

(Grove, Zald, Lebow, Snitz, & Nelson, 2000).

Meehl (1954) was among the ®rst to alert psy-

chologists to the superiority of statistical predic-

tion compared to clinical judgment. Little has

changed in this regard over the last 46 years. In

a recent meta-analysis of 136 studies on health

and human behavior, Grove et al. (2000) found

that statistical prediction techniques were about

10% more accurate than clinical predictions.

Statistical prediction signi®cantly outperformed

clinical prediction in 33±47% of the studies.

Clinical prediction was more accurate in only

6±16% of the cases. The superiority of statistical

prediction was consistent regardless of type of

judgment or judge, judges' amount of experience,

or type of data.

We are not advocating that statistical algo-

rithms replace clinical judgment. However, we do

believe that statistical algorithms deserve wider

use in the detection of response bias. Detecting

response bias will be likely to require more than a

single test. We strongly recommend the use of at

least one FCT to assess response bias. Below

chance performance on a FCT is certainly compel-

ling evidence of response bias, but only a minority

of malingering cases will perform this poorly.

Moreover, the simplicity of some FCTs may render

their intent transparent so that malingerers may

easily evade detection. In addition, the appearance

and format of some FCTs are easily recognizable.

Thus, an unremarkable FCT performance does not

rule out response bias.

There is a clear need to supplement FCTs with

other response bias indices such as those employing

¯oor effects, multivariable composites, and / or

performance curve analysis. Such indices may be

less prone to coaching and can be easily integrated

into the clinical examination. However, much work

remains to be done to determine optimal sets of

these indices and measures. Techniques like BMA

appear to have considerable potential to assist us in

®nding parsimonious detection models without

overly simplifying complex processes.
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APPENDIX

Following the notation of Hoeting et al. (1999),

let � be the quantity of interest, such as the

probability of response bias. We are interested

in the posterior distribution of � given the data,

D. We average over all possible models, Mk;

k � 1 . . . K, where Mk indicates a unique subset

of Response Bias tests:

pr �� jD� �
XK

k�1

pr�� jMk;D�pr�Mk jD�:

�1�
This is a weighted average of the posterior dis-

tributions under each of the models considered,

where the weights are the posterior model prob-

abilities, pr (Mk | D). These posterior probabilities

are given by:

pr�Mk jD� � pr�D jMk� pr �Mk�PI
i�1

pr�D jMi� pr �Mi�0
�2�

where pr (Mi) is the prior for model Mi, and

pr �DjMk�
�
Z

pr�Dj�k;Mk� pr ��kj;Mk� d�k �3�

is the marginal likelihood under model Mk (with

parameters �k). Although Equation 1 suggests that

we will be averaging over all of the models in our

model space, Madigan and Raftery (1994)

showed that Equation 1 is well approximated by

averaging over a small group of parsimonious

data-supported models, substantially reducing

computational complexity. For further discussion

of exhaustive summation and the computation of

the integrals implied by the foregoing equations,

see Hoeting et al. (1999).
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